Jump to content

Thermodesulfobacteriota

From Wikipedia, the free encyclopedia

Thermodesulfobacteriota
Nitratidesulfovibrio vulgaris
Scientific classification Edit this classification
Domain: Bacteria
Kingdom: Pseudomonadati
Phylum: Thermodesulfobacteriota
Garrity & Holt 2021[1]
Classes[2]
Synonyms[2]
  • "Ca. Dadabacteria" Hug et al. 2016
  • "Desulfobacterota" Waite et al. 2020
  • "Thermodesulfobacteraeota" Oren et al. 2015
  • Thermodesulfobacteria Garrity and Holt 2002
  • "Thermodesulfobacteriota" Whitman et al. 2018

The Thermodesulfobacteriota, or Desulfobacterota,[3] are a phylum of Gram-negative bacteria. Many representatives are sulfate-reducing bacteria,[4] others can grow by disproportionation of various sulphur species,[5] reduction or iron,[6] or even use external surfaces as electron acceptors.[7] They have highly variable morphology: vibrio, rods, cocci, and filaments.[3]

Taxonomy

[edit]

The bacterial phylum Desulfobacterota has been created by merging: 1) the well-established class Thermodesulfobacteria, 2) the proposed phylum Dadabacteria, and 3) various taxa separated from the abandoned non-monophyletic class "Deltaproteobacteria" alongside three other phyla: Myxococcota, Bdellovibrionota, and SAR324.[3]

Metabolism

[edit]

Sulfate-reducing bacteria (SRB) utilize sulfate as a terminal electron acceptor in a respiratory-type metabolism, coupled to the oxidation of organic compounds or hydrogen. By reducing sulfate, many Desulfobacterota species substantially contribute to the sulfur cycle.[3]

Microbial sulfur disproportionation (MSD) is a poorly known type of energy metabolism analogous to organic fermentation, where a single inorganic sulfur species of intermediate oxidation state is simultaneously oxidized and reduced, resulting in production of sulfide and sulfate. In Desulfobacterota, MSD is often present in species that also perform sulfate reduction.[5]

Fe(III) minerals can be microbially reduced by Fe-reducing bacteria (FeRB) using a wide range of organic compounds or H2 as electron donors. FeRB are widespread across Bacteria and Archaea. Among Desulfobacterota, they are represented e.g. by the genus Geobacter (Desulfuromonadia).[8]

Certain species of the families Geobacteraceae and Desulfuromonadaceae (Desulfuromonadia) are able to use external surfaces as electron acceptors to complete respiration, eliminating the need for performing a reductive reaction like sulfate or iron reduction in other types of respiratory metabolism.[7][9][10]

Certain species of the class Syntrophia use simple organic molecules as electron donors and grow only in the presence of H2/formate-utilizing partners (methanogens or Desulfovibrio) in syntrophic associations.[11]

Notable species

[edit]

Phylogeny

[edit]

The phylogeny is based on phylogenomic analysis:

120 marker proteins based GTDB 09-RS220[16][17][18]

Waite et al. 2020[2]

Thermodesulfo
‑bacteriota


16S rRNA based LTP_10_2024[19][20][21]

Desulfobacterota G
Syntrophorhabdia

Syntrophorhabdales

"Desulfuromonadota"
"Desulfatiglandia"

Desulfatiglandales

Desulfobaccia

Desulfobaccales

Dissulfuribacteria

Dissulfuribacterales

"Binatota"
"Binatia"

"Binatales"

(Desulfobacterota B)
"Deferrisomatota"
(Desulfobacterota C)
"Deferrimicrobiota"
"Deferrimicrobiia"

"Deferrimicrobiales"

(Desulfobacterota E)
Thermodesulfo
‑bacteriota
Desulfobacterota G
Syntrophorhabdia

Syntrophorhabdales

"Dadaibacteriota"
"Dadabacteria"

"Nemesobacterales"

(Desulfobacterota D)
"Acidulodesulfobacteriota"
"Acidulodesulfobacteriia"

"Acidulidesulfobacterales"
(SZUA-79)

See also

[edit]

Reference

[edit]
  1. ^ Oren A, Garrity GM (2021). "Valid publication of the names of forty-two phyla of prokaryotes". Int J Syst Evol Microbiol. 71 (10): 5056. doi:10.1099/ijsem.0.005056. PMID 34694987.
  2. ^ a b c Waite DW, Chuvochina M, Pelikan C, Parks DH, Yilmaz P, Wagner M, Loy A, Naganuma T, Nakai R, Whitman WB, Hahn MW, Kuever J, Hugenholtz P. (2020). "Proposal to reclassify the proteobacterial classes Deltaproteobacteria and Oligoflexia, and the phylum Thermodesulfobacteria into four phyla reflecting major functional capabilities". Int J Syst Evol Microbiol. 70 (11): 5972–6016. doi:10.1099/ijsem.0.004213. PMID 33151140.
  3. ^ a b c d Waite, David W; Chuvochina, Maria; Pelikan, Claus; Parks, Donovan H; Yilmaz, Pelin; Wagner, Michael; Loy, Alexander; Naganuma, Takeshi; Nakai, Ryosuke; Whitman, William B; Hahn, Martin W; Kuever, Jan; Hugenholtz, Philip (2020-11-01). "Proposal to reclassify the proteobacterial classes Deltaproteobacteria and Oligoflexia, and the phylum Thermodesulfobacteria into four phyla reflecting major functional capabilities". International Journal of Systematic and Evolutionary Microbiology. 70 (11): 5972–6016. doi:10.1099/ijsem.0.004213. ISSN 1466-5026.
  4. ^ Müller, Albert Leopold; Kjeldsen, Kasper Urup; Rattei, Thomas; Pester, Michael; Loy, Alexander (2015-05-01). "Phylogenetic and environmental diversity of DsrAB-type dissimilatory (bi)sulfite reductases". The ISME Journal. 9 (5): 1152–1165. doi:10.1038/ismej.2014.208. ISSN 1751-7362. PMC 4351914. PMID 25343514.
  5. ^ a b Slobodkin, A. I.; Slobodkina, G. B. (2019). "Diversity of Sulfur-Disproportionating Microorganisms". Microbiology. 88 (5): 509–522. doi:10.1134/S0026261719050138. ISSN 0026-2617.
  6. ^ Slobodkina, G. B.; Reysenbach, A.-L.; Panteleeva, A. N.; Kostrikina, N. A.; Wagner, I. D.; Bonch-Osmolovskaya, E. A.; Slobodkin, A. I. (2012-10-01). "Deferrisoma camini gen. nov., sp. nov., a moderately thermophilic, dissimilatory iron(III)-reducing bacterium from a deep-sea hydrothermal vent that forms a distinct phylogenetic branch in the Deltaproteobacteria". International Journal of Systematic and Evolutionary Microbiology. 62 (Pt_10): 2463–2468. doi:10.1099/ijs.0.038372-0. ISSN 1466-5026.
  7. ^ a b Bond, Daniel R.; Holmes, Dawn E.; Tender, Leonard M.; Lovley, Derek R. (2002-01-18). "Electrode-Reducing Microorganisms That Harvest Energy from Marine Sediments". Science. 295 (5554): 483–485. doi:10.1126/science.1066771. ISSN 0036-8075.
  8. ^ Luef, Birgit; Fakra, Sirine C; Csencsits, Roseann; Wrighton, Kelly C; Williams, Kenneth H; Wilkins, Michael J; Downing, Kenneth H; Long, Philip E; Comolli, Luis R; Banfield, Jillian F (2013-02-01). "Iron-reducing bacteria accumulate ferric oxyhydroxide nanoparticle aggregates that may support planktonic growth". The ISME Journal. 7 (2): 338–350. doi:10.1038/ismej.2012.103. ISSN 1751-7362. PMC 3554402. PMID 23038172.
  9. ^ Holmes, Dawn E.; Nicoll, Julie S.; Bond, Daniel R.; Lovley, Derek R. (2004). "Potential Role of a Novel Psychrotolerant Member of the Family Geobacteraceae , Geopsychrobacter electrodiphilus gen. nov., sp. nov., in Electricity Production by a Marine Sediment Fuel Cell". Applied and Environmental Microbiology. 70 (10): 6023–6030. doi:10.1128/AEM.70.10.6023-6030.2004. ISSN 0099-2240. PMC 522133. PMID 15466546.
  10. ^ Reguera, Gemma; McCarthy, Kevin D.; Mehta, Teena; Nicoll, Julie S.; Tuominen, Mark T.; Lovley, Derek R. (2005). "Extracellular electron transfer via microbial nanowires". Nature. 435 (7045): 1098–1101. doi:10.1038/nature03661. ISSN 0028-0836.
  11. ^ Kuever, Jan (2014), Rosenberg, Eugene; DeLong, Edward F.; Lory, Stephen; Stackebrandt, Erko (eds.), "The Family Syntrophaceae", The Prokaryotes, Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 281–288, doi:10.1007/978-3-642-39044-9_269, ISBN 978-3-642-39043-2, retrieved 2025-03-27
  12. ^ Gong, Yanming; Ebrahim, Ali; Feist, Adam M.; Embree, Mallory; Zhang, Tian; Lovley, Derek; Zengler, Karsten (2013-01-02). "Sulfide-Driven Microbial Electrosynthesis". Environmental Science & Technology. 47 (1): 568–573. doi:10.1021/es303837j. ISSN 0013-936X.
  13. ^ McORIST, S.; Gebhart, C. J.; Boid, R.; Barns, S. M. (1995-10-01). "Characterization of Lawsonia intracellularis gen. nov., sp. nov., the Obligately Intracellular Bacterium of Porcine Proliferative Enteropathy". International Journal of Systematic Bacteriology. 45 (4): 820–825. doi:10.1099/00207713-45-4-820. ISSN 0020-7713.
  14. ^ Gebhart, C. J.; Barns, S. M.; Mcorist, S.; Lin, G.-F.; Lawson, G. H. K. (1993-07-01). "Ileal Symbiont Intracellularis, an Obligate Intracellular Bacterium of Porcine Intestines Showing a Relationship to Desulfovibrio Species". International Journal of Systematic Bacteriology. 43 (3): 533–538. doi:10.1099/00207713-43-3-533. ISSN 0020-7713.
  15. ^ Slobodkin, A. I.; Reysenbach, A.-L.; Slobodkina, G. B.; Kolganova, T. V.; Kostrikina, N. A.; Bonch-Osmolovskaya, E. A. (2013-06-01). "Dissulfuribacter thermophilus gen. nov., sp. nov., a thermophilic, autotrophic, sulfur-disproportionating, deeply branching deltaproteobacterium from a deep-sea hydrothermal vent". International Journal of Systematic and Evolutionary Microbiology. 63 (Pt_6): 1967–1971. doi:10.1099/ijs.0.046938-0. ISSN 1466-5026.
  16. ^ "GTDB release 09-RS220". Genome Taxonomy Database. Retrieved 10 May 2024.
  17. ^ "bac120_r220.sp_labels". Genome Taxonomy Database. Retrieved 10 May 2024.
  18. ^ "Taxon History". Genome Taxonomy Database. Retrieved 10 May 2024.
  19. ^ "The LTP". Retrieved 10 December 2024.
  20. ^ "LTP_all tree in newick format". Retrieved 10 December 2024.
  21. ^ "LTP_10_2024 Release Notes" (PDF). Retrieved 10 December 2024.